首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182110篇
  免费   16479篇
  国内免费   8303篇
电工技术   11566篇
技术理论   14篇
综合类   12036篇
化学工业   29254篇
金属工艺   10055篇
机械仪表   11570篇
建筑科学   13951篇
矿业工程   5515篇
能源动力   5433篇
轻工业   12801篇
水利工程   3354篇
石油天然气   10955篇
武器工业   1452篇
无线电   21841篇
一般工业技术   21832篇
冶金工业   8971篇
原子能技术   1957篇
自动化技术   24335篇
  2024年   371篇
  2023年   3294篇
  2022年   5453篇
  2021年   8223篇
  2020年   6369篇
  2019年   5072篇
  2018年   5807篇
  2017年   6437篇
  2016年   5765篇
  2015年   7719篇
  2014年   9634篇
  2013年   11603篇
  2012年   12669篇
  2011年   13358篇
  2010年   11392篇
  2009年   10728篇
  2008年   10281篇
  2007年   9483篇
  2006年   9674篇
  2005年   8245篇
  2004年   5512篇
  2003年   4654篇
  2002年   4150篇
  2001年   3758篇
  2000年   3621篇
  1999年   4235篇
  1998年   3633篇
  1997年   3037篇
  1996年   2783篇
  1995年   2286篇
  1994年   1847篇
  1993年   1336篇
  1992年   1063篇
  1991年   787篇
  1990年   571篇
  1989年   471篇
  1988年   378篇
  1987年   248篇
  1986年   203篇
  1985年   128篇
  1984年   111篇
  1983年   86篇
  1982年   88篇
  1981年   67篇
  1980年   64篇
  1979年   34篇
  1978年   28篇
  1977年   34篇
  1976年   37篇
  1975年   18篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
3.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
4.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
5.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
6.
To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources on the design parameters of small prismatic high-temperature gas-cooled reactors(HTGRs).In particular,the contribution of nuclear data to the keff uncertainty is an important part of the uncertainty analysis of small-sized HTGR physical calculations.In this study,a small-sized HTGR designed by China Nuclear Power Engineering Co.,Ltd.was selected for keff uncertainty analysis during full lifetime burnup calculations.Models of the cold zero power(CZP)condition and full lifetime burnup process were constructed using the Reactor Monte Carlo Code RMC for neutron transport calculation,depletion calculation,and sensitivity and uncertainty analysis.For the sensitivity analysis,the Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance Characterization(CLUTCH)method was applied to obtain sensitive infor-mation,and the"sandwich"method was used to quantify the keff uncertainty.We also compared the keff uncertainties to other typical reactors.Our results show that 235U is the largest contributor to keff uncertainty for both the CZP and depletion conditions,while the contribution of 239Pu is not very significant because of the design of low discharge burnup.It is worth noting that the radioactive capture reaction of 28Si significantly contributes to the keff uncer-tainty owing to its specific fuel design.However,the keff uncertainty during the full lifetime depletion process was relatively stable,only increasing by 1.12%owing to the low discharge burnup design of small-sized HTGRs.These numerical results are beneficial for neutronics design and core parameters optimization in further uncertainty prop-agation and quantification study for small-sized HTGR.  相似文献   
7.
Shen  Aiguo  Ye  Qiubo  Yang  Guangsong  Hao  Xinyu 《Telecommunication Systems》2021,78(4):629-643
Telecommunication Systems - Machine to Machine technology has a broad application prospect in the 5G network, but there is a bottleneck in the energy consumption of intelligent devices powered by...  相似文献   
8.
LiNbO3 crystals activated by Sm3+ and co-doped with Zr4+ (Sm:Zr:LN) or Hf4+ (Sm:Hf:LN) were prepared by the Czochralski method. Detailed investigation on spectroscopic properties was conducted on the frame of Judd-Ofelt (J-O) theory. The J-O intensity parameters Ωi (i = 2, 4, 6), fluorescence branching ratios and radiative lifetime of excited level 4G5/2 were determined. Furthermore, the thermal stability of the strong orange-red emissions obtained under near-UV excitation in both crystals was evaluated. As high as 100% and 97% of integrated intensities at room temperature in Sm:Zr:LN and Sm:Hf:LN respectively were retained at 423 K, demonstrating the suppressed thermal attenuation. The temperature sensing performance based on fluorescence intensity ratio strategy was degraded at higher temperatures with relatively low sensitivities, while the shift of CIE chromaticity coordinates of Sm:Zr:LN and Sm:Hf:LN in the orange-red region was insignificant, demonstrating the color constancy with increasing temperature. With the efficient and thermally stable orange-red luminescence, Sm:Zr:LN and Sm:Hf:LN could serve as promising candidate materials for near-UV excited white light-emitting diodes.  相似文献   
9.
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.  相似文献   
10.
Amides from indole-3-glyoxylic acid and 4-benzoyl-2-methylpiperazine, which are related to entry inhibitors developed by Bristol-Myers Squibb (BMS), have been synthesized with aliphatic chains located at the C7 position of the indole ring. These spacers contain an azido group suitable for the well-known Cu(I)-catalyzed (3+2)-cycloaddition or an activated triple bond for the nucleophilic addition of thiols under physiological conditions. Reaction with polyols (β-cyclodextrin and hyperbranched polyglycerol) decorated with complementary click partners has afforded polyol-BMS-like conjugates that are not cytotoxic (TZM.bl cells) and retain the activity against R5-HIV-1NLAD8 isolates. Thus, potential vaginal microbicides based on entry inhibitors, which can be called of 4th generation, are reported here for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号